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Diffusion-driven superplasticity in ceramics: Modeling and comparison with available data
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The discovery of superplasticity in ceramics polycrystals led to debates about whether or not earlier models
developed for metallic polycrystals can apply to these systems. In particular, all existing models require some
mobility of lattice or grain-boundary dislocations whereas such activity is not observed in most ceramic
systems. A model is presented that accounts for the occurrence of superplasticity in the absence of dislocation
motion. It is based on a mechanism of grain-boundary sliding by pure-shear motion under stationary condi-
tions, which is accommodated by lattice or grain-boundary diffusion. The prediction of this model regarding
the temperature dependences of the stress exponent and of the effective activation energy are found in agree-
ment with experimental results and literature data on five ceramic systems where dislocation activity could not
be recorded: B-SiAION polycrystals, Al-doped SiC polycrystals, nanocrystalline MgO, yttria-tetragonal zirco-

nia polycrystals, and alumina ceramics polycrystals.
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I. INTRODUCTION

Superplasticity is the ability exhibited by some solids to
sustain extremely large plastic elongations without necking,
cracking, or being damaged. Typical superplastic elongations
can be of several times the initial length of the specimen and
much more, in particular, cases. This phenomenon was found
in fine-grained polycrystals of pure metals and metallic al-
loys in the first half of the 20th century. It occurs in specific
deformation conditions, typically a temperature higher than
half the melting point, a strain rate in the range of conven-
tional laboratory tests (=107* s~!) within about 2 orders of
magnitude and a grain size smaller than 10-20 um, which
does not evolve during testing.! Superplasticity draws its
technological importance from the possibility it offers to
form complex components with some very common engi-
neering alloys.

In phenomenological terms, the reason for the occurrence
of superplasticity is a high sensitivity of the stress to the
strain rate. This property prevents plastic flow from becom-
ing nonuniform by inhibiting the local increase in strain rate
associated with the growth of strain localizations. High
strain-rate sensitivities can be obtained in polycrystals when
plastic flow is controlled by diffusion mechanisms and ac-
commodated by grain-boundary (GB) sliding or vice versa.
Although there is general agreement on this point, the under-
lying mechanisms are still the object of debates.>™*

The interest on this phenomenon was renewed by the dis-
covery of superplasticity in ceramics by Wakai® in 1986.
Since then, a great effort has been carried out to find new
ceramic systems exhibiting a superplastic response at tem-
peratures as low as possible, strain rates as high as possible
or both. Despite the obvious technological interest of super-
plasticity in the field of ceramics, there is a lack of a model
specific for this type of materials and having a sufficient
predictive ability. Till now, most studies were based on ex-
isting models for metallic materials, which involve disloca-
tion activity inside the grains or along the GBs. However,
detailed analyses of experimental results show that these
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models suffer from severe shortcomings when applied to ce-
ramic materials, as illustrated by the careful analysis by
Morita and Hiraga® in yttria-tetragonal zirconia polycrystals
(Y-TZP). In particular, no dislocation activity at all was de-
tected in many ceramic systems.

Understanding superplasticity in crystalline solids from a
fundamental viewpoint is still a challenging task. This is due
to the rich diversity of materials and microstructures in
which such phenomenon is reported. A nondislocation-based
model for superplasticity in ceramics is presented here. It
involves very simple assumptions, of which the validity is
assessed in several ceramic systems that have been exten-
sively studied, notably Y-TZP. Before deriving this model,
several major experimental features of superplasticity and a
critical assessment of the current state of the art in modeling
must be made.

There is common agreement on the fact that superplastic-
ity is an irreversible process occurring without any micro-
structural change, this feature being the key to the uniform
character of plastic flow. The steady-state strain rate obtained
during creep tests on superplastic materials is usually fitted

to an equation of the form'
P n
D s

where € is the strain rate, A is a constant, G is the shear
modulus of the material, kT has its usual meaning, b is a
characteristic atomic length of the microstructure, typically
the modulus of the Burgers vector, d is the grain size, and o
is the constant applied stress. D behaves as a diffusion coef-
ficient and is related to an apparent activation energy Q by an
Arrhenius form D=D, exp(—=Q/kT). This form can be ex-
perimentally identified as the diffusivity of one or a few of
the mobile species in the solid. In such a case, Q truly rep-
resents the activation energy of the involved diffusion pro-
cess. The phenomenological parameters p and n describe the
response to changes in grain size and stress; they are com-
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monly called the “grain-size exponent” and the ““stress expo-
nent.”

A physical theory of superplasticity should be able to ac-
count for the following experimental facts: (1) deformation
must proceed at constant microstructure. (2) the stress expo-
nent is n=1 in many polycrystalline systems but it is also
commonly found to be n=2 in others.? Furthermore, a tran-
sition from n=1 to n=2 was found upon increasing the flow
stress or the grain size.>* (3) the grain-size exponent p
ranges between 2 and 3 in most cases, although the value
p=1 was occasionally reported.’

In what follows, we do not consider models that were
developed to explain superplasticity in materials containing a
glassy phase (see Meléndez-Martinez et al.” for a review). In
such systems, the glassy phase was shown to play a central
role as a medium for species solution, migration, and further
GB precipitation. As far as fully crystalline materials are
concerned, the two most important dislocation-based models
that were proposed to explain the experimental data are
shortly recalled.

The model by Ball and Hutchinson?® states that deforma-
tion is due to intergranular dislocation glide accommodated
by dislocation climb at GBs. It predicts a parabolic stress
dependence of the strain rate and a value p=2, irrespective
of the flow stress. This model applies to many metallic and
nonmetallic systems® but not to all of them. In addition, it
cannot explain the transition of the stress exponent n men-
tioned in the second experimental fact cited above.

The second model, which was proposed by Ashby and
Verrall,'? involves two sequential processes. It is based on a
topological mechanism for GB sliding followed by accom-
modation by atomic diffusion along the boundaries. This
model predicts a linear stress dependence of the strain rate
(n=1) and a threshold stress for GB sliding that depends on
the interfacial boundary energy. As a consequence, the strain
rate should exhibit sigmoidal stress dependence at low
stresses, reflecting the presence of the threshold stress.'®
There are, however, several inconsistencies with experiment.
The stress exponent cannot take any other value than n=1,
the predicted threshold stress values are usually too small to
be experimentally detectable and they are much lower than
the ones that are sometimes measured. Finally, given the
stress, the predicted strain rates are four orders of magnitude
smaller than the measured ones.

Artz et al."! further developed an improved version of the
original model by Ashby and Verrall. It contains two addi-
tions of which only one is significant. It is admitted that
grain migration is controlled by the mobility of evenly
spaced GB dislocations. The mobility of these dislocations is
severely limited by the dragging effect of solutes present in
the grain boundaries. Assuming that the dislocation density is
proportional to the flow stress, the modified creep equation
yields two new features: the stress exponent decreases from
n=2 at low stresses to n=1 with increasing stress while the
grain-size exponent increases from p=1 to p=2.

We emphasize that these models are not to be systemati-
cally discarded in the present study. Indeed, the predictions
of the Ball-Hutchinson model are verified in many metallic
alloys. In fact, this model is likely to apply whenever dislo-
cations glide occurs inside the grains. However, in most non-
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FIG. 1. Macroscopic deformation in compression of a cylindri-
cal sample of radius R and height z. In a normal cross section, the
motion of the grains is radial.

metallic systems, including ceramics, dislocation activity re-
quires very high applied stresses, which are well above the
experimentally recorded ones. In parallel, as already men-
tioned, postmortem examinations of deformed samples re-
veal the absence of such dislocation activity. Therefore, there
is a lack of understanding for superplasticity in these sys-
tems. This constituted the motivation for developing the
model that is presented, discussed, and applied to different
ceramic systems in the next sections.

II. MODELING DIFFUSION-DRIVEN SUPERPLASTICITY

A. Shear events and strain rate.

We consider a cylindrical polycrystalline specimen with
average grain size d submitted to a constant uniaxial com-
pressive stress (Fig. 1). In consistency with the principle of
constancy of the microstructure in steady-state conditions,
we assume that the temperature is high enough so that the
grains can move with respect to each other. As was proposed
by Ashby and Verrall,'' the microstructure is then periodi-
cally altered and reconstructed through the switching of
neighboring grains in small clusters. The global result is a
heterogeneous deformation along the loading axis produced
by the radial shear displacement of some grains in normal
cross sections (Fig. 1). We finally assume that grain motion
is uncorrelated at times that are large with respect to the time
scale of a single event. This was experimentally checked
recently in Y-TZP.?

The motion of the center of mass of a single grain relative
to a contiguous grain can be decomposed as follows. Shear
motion, that is a translation parallel to the grain boundary, is
mostly responsible for superplastic deformation whereas nor-
mal motion is responsible for the so-called accommodation
process. The latter is mostly controlled by diffusional mecha-
nisms, specifically lattice or grain-boundary diffusion, and it
governs the strain rate. Statistically, a mean flight time, J7y,
can be associated to pure-shear motion. This deformation is
accommodated through lattice or grain diffusion processes
during a mean characteristic time 675. When accommodation
takes place, there is no net additional deformation or it is
negligible. In what follows, use is made of the ratio of these
two characteristic times, B=07g/ d7p. Figure 2 displays a
schematic view of the deformation process.
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FIG. 2. Scheme showing the elementary process generating de-
formation. A two-dimensional picture of hexagonal grains is
adopted, following the ideas reported by Ashby and Verrall. A set of
four grains (a) elongates under compression through rotation (grains
A and C), which is in fact a diffusional process, followed by pure-
shear motion [adopting the configuration (b)]. Rotation is controlled
by mass transport during a characteristic time &7p. Pure-shear mo-
tion is controlled by voids shrinkage [squares in black in (c)] during
a typical time J7g. This motion is ruled by the curvature change in
the interfaces in contact. It is important to emphasize that shear
motion demands the existence of voids which must be created by
grain growth or shrinkage of adjacent grains.

The condition of volume conservation during plastic de-
formation is written as zdS+Sdz=0, where S is the cross-
sectional area and z is the height of the sample (Fig. 1). In
compression, the strain rate is given by

pdi 45 @
z S
where the dots denote derivation with respect to time.

During steady-state deformation, and in the absence of
statistical time correlations, the grains move stochastically
by a Markov process.'? In such conditions, the net deforma-
tion is produced by a constant number of grains N. The num-
ber of grains moving by pure-shear events per unit time,

Npear 1S then

. N N
Nypear = W0—>l5_ -Wio > (3)

TS 5’7’[)
where W,_; is the probability for a transition from predomi-
nant normal motion (state “0”) to a pure-shear displacement
(state “1”’) and W,_, is the probability for the reverse tran-

sition. In steady state, thm,zo, hence N is a constant. With
Wo_,1+W;_0=1, one obtains

_ o B
OTg+ 57'0_ 1+ﬁ.

WO—»] = (4)

This type of relation is typical of queuing theories.'*
During pure-shear motion, the center of a grain has a
velocity ad/ 67g, where « is a numerical factor. One neces-
sarily has @ <<1 because shear motion is associated to accom-
modation steps. The parameter « was evaluated by

PHYSICAL REVIEW B 80, 214107 (2009)

Padmanabhan'® in the way suggested by Gifkins and
Langdon,” taking into account that the nonspherical character
of the grains limits grain-boundary sliding. For two-
dimensional hexagonal grains the value found is «=0.07. In
general, o depends on grain topology. In materials with al-
most equiaxed grains, a=0.5, that is, ad is the radius of the
sphere circumscribing an average grain.

The whole shearing and accommodation processes occur
during a time interval d7= 75+ O1p, which is the sum of the
characteristic times for pure shear and pure accommodation.
Denoting by ow the average radial displacement per grain
that results from a shearing event, the mean displacement
rate per grain, ow/ o7, is written as

ow ad o1y ad
o5t 075 07+ O7p - Srp(1+p)

)

During the time interval J7, the area of a normal cross sec-

tion increases at a rate S =27TRR, where R is the radius of the
sample (Fig. 1). In steady state, the rate at which the radius R
increases is the product of the constant number of shearing
events, Ny, by the average displacement rate per grains as
given by Eq. (5). The increment of section is then given by

ad
Srp(1+ )

The number of pure-shear events in steady-state regime,
Nhears 1 the product of the number of grains along the radial
direction (R/d) by the probability for a shear motion, W, _,,,
which is given by Eq. (4). In conditions of constant volume
[Eq. (2)], the strain rate is eventually written as

dS = 27TRNsheur (6)

.___—__201—57'5 (7)
TS T (4B oy (bre+ omp)

B. Superplastic strain rate

To express the strain rate in terms of stress and tempera-
ture, the characteristic times o7y and d7, have to be esti-
mated. The characteristic time for diffusion is straightfor-
wardly obtained from diffusion theory. Taking a diffusion
path of length ad and a driving force deriving from the gra-
dient of chemical potential on the grains, one obtains'®

ad a*d?

= = kT
a'QDeff/kTad O'QDeff

o7p (8)
where o is the applied stress, () is the atomic volume of the
diffusing species controlling accommodation, and D, is the
effective diffusion coefficient along the possible diffusion
paths. It is worth noting that this diffusion coefficient is a
linear combination of the lattice and the grain-boundary dif-
fusion coefficients, respectively, Dy and Dy, (Ref. 16): Dg
=D¢+mODy,/d. In this expression, & is the thickness of the
grain-boundary diffusion layer, which is assimilated to the
lattice parameter. Depending upon the value of 76/d, the
effective diffusion process can be approximated by lattice or
grain diffusion processes. Thus, the controlling diffusion
mechanism can usually be determined from experimental
values of the activation energy.
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Combining Egs. (7) and (8), one obtains

. 2B aQ
= 1+ B kTad ™ ©)

To determine the ratio 8= 67g/ 57p, one has to know the tem-
perature and stress dependences of O7g. This last quantity
depends on the system under study through the mechanism
that governs grain-boundary mobility during a shearing
event.

In some systems, grain-boundary motion is controlled by
the Herring equation,!” which expresses that the motion of a
curved grain boundary is driven by the gradient of its surface
energy. In other words, the motion is driven by the tendency
of grain surfaces to flatten under the effect of their interfacial
energy . In a linear approximation, the velocity of a grain,
dx/dt, is proportional to its mean curvature 2/x, where x is
the normal distance from the grain boundary to the center of
curvature of the grain. One then has

—=p, (10)
where w is the grain-boundary mobility. Thus, for a shear

displacement ad, Eq. (11) is integrated in the form

5 J(“'M)M xdx a1l + a*4)d?
o= = .
> dr 2yu 16yu

(11)

The choice of the upper integration limit is consistent with
the Ashby-Verrall’s model.'” The total displacement is ad
and pure-shear motion requires a grain curvature equal to
one half of the displacement induced by pure diffusion mo-
tion (cf. Fig. 4 of Ref. 10). This pure diffusion motion pro-
duces a strain of 0.55, in good agreement with the choice of
ad/4 for the change in curvature value. Combining Egs. (8)
and (11), one obtains an expression for 3,

B o Q(1 + a?/4) Deg

. (12)
16akT vy

The grain mobility is proportional to the grain-boundary dif-
fusivity, D, through a relation that involves the thickness of
the grain-boundary layer,'®

" (13)

=——Dy,.
2mkTS &
Thus, in the considered type of systems, one finally obtains
1+ a?/4) 78D

p= Tt ) 70D (14)

8a Y ng

In other systems, particularly in the ones where grain-
boundary mobility is limited by solute drag, grain-boundary
motion usually follows the relation:!’

—=p. (15)

The characteristic time associated with a shearing event, is
obtained by integration, as was done above. One straightfor-
wardly obtains
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ad® a o
OTg= 1+—+—|. (16)
32you 2 12

The grain mobility has same expression as in Eq. (13) with,
however, a different mechanism associated with the diffusiv-
ity Dgp,. Combining Eqs. (8), (13), and (16), one obtains an-
other expression for B as a function of stress, grain size, and
temperature,

2
—10—d<1+5+1>%. (17)
2 12/ Dy,

An important aspect must be emphasized before continuing
with the implications of this model. Equations (10) and (15)
assume that shear motion is essentially driven by the curva-
ture effects of the grain boundaries. Such assumption is a key
ingredient of this model, which had not been considered pre-
viously. It is consistent with the recent numerical models."”
The curvature effects have been shown to play a remarkable
role on the segregation of aliovalent cations to the bound-
aries in some superplastic ceramic systems.?%?!

C. Limiting cases

Two limiting cases, which correspond to the most usual
experimental conditions, will be considered in what follows.
In the first limiting case, the shearing step is much faster than
the accommodation step and one has << 1. This case is typi-
cally met in low-stress high-temperature conditions, as fur-
ther discussed in Sec. II D. Then, Eq. (9) can be approxi-
mated by

. 2BaQ

g= EEDEH. (18)

When the shearing velocity of grains is governed by curva-
ture, B is given by Eq. (14). The creep rate given by Eq. (18)
can be expressed in the form

. Gbh[a\*b\
e=A—\—=]\=)| D, (19)
kT\G/ \d
where A=A 6GQ/yb?, with A,=(1+a?/4)m/8a?, is a di-
mensionless constant and D’ =D/ Dy, has the dimension of
a diffusion coefficient.

When the shearing rate is governed by solute drag, S is
given by Eq. (17) and the creep equation is written as

s=A"—|—=||=]|D". (20)
kT\G) \d

The value of the dimensionless constant is now A’
=A!GQ/ yb?, with A =7(1+a/2+a?/12)/ 16 yb>.

In this limiting high-temperature case, non-Newtonian
flow is obtained from the condition S<<1, which implies
large shearing velocities. In such conditions, grain growth
may be expected to prevent the occurrence of a large-scale
superplastic regime. This is, indeed, observed in some ce-
ramic systems, in which extensive grain growth is associated
to plastic flow, microstructural evolution, and strain harden-
ing. Nevertheless, superplastic behavior is obtained in many
other ceramic materials, notably yttria-tetragonal zirconia
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polycrystals, before the onset of appreciable grain growth.
The analysis of experimental results presented in Sec. III D
is exclusively dealing with such ceramic systems.

In the second limiting case, the two characteristic times
are similar and B~ 1. The creep rate, as given by Eq. (9), is

then written as
. Gb({a\[b\?
8=BE 5 3 Deff' (21)

Equation (21) has same functional form as the one proposed
by Herring'® except for the value of the constant, which is
here B=Q)/2ab’. However, in contrast to what is assumed in
the model by Nabarro and Herring,!” plastic flow is still gov-
erned by grain-boundary sliding.

The case where 8>1 is not considered here. It corre-
sponds to a deformation process with microstructural evolu-
tion so that no superplastic behavior can be obtained.

D. Phenomenological stress and temperature dependences

Stress dependence. The superplastic behavior is usually
fitted to a power law. The stress exponent n, which is defined
in Eq. (1), is n=2 in Egs. (20) and (21), that is when 8=0
whereas it is n=1 in Eq. (22) when B=1. One can notice that
the values of B given by Egs. (14) and (17) are proportional
to the stress o. This allows determining an effective stress
exponent, n., from Eq. (9),

_<0lné) 2 )
"=\ gma), 148

Thus, the present model predicts that during superplastic
flow the stress exponent decreases with increasing stress and
varies continuously from n=2 to n=1.

Temperature dependence of the strain rate. The tempera-
ture dependence is mostly fitted to an Arrhenius form, with
an activation energy Q given by Q=kT*(dIn &/dT),. The
partial derivative is calculated from Eq. (9); in this equation,
the ratio B of the characteristic times for diffusion and shear
is of the form B exp[—(Qepr—Q,p)/kT], Where Q. is the
effective activation energy for diffusion and Q,, is the acti-
vation energy for grain-boundary diffusion. Neglecting a
small term k7, one eventually obtains

1-
Q=0+ #Z(Qeff— Ogb)- (23)
One can see that Q=~20.4— 0y When S<1 and Q= Q.
when B~ 1. In most cases, Q. is very close to the activation
energy for lattice diffusion, particularly if the grain size is
large enough.

It is important to emphasize that these two dependences
cannot be explained in the frame of a dislocation-based
model. Such model would predict a nontemperature depen-
dence of the activation energy. Moreover, it would predict a
constant value of the stress exponent (n=2) in the whole
range of stress and temperatures® of plastic regime or only
for very small stresses if the modified version!! is consid-
ered. Such predictions are just the opposite of those derived
from the model discussed in this paper. We will see in the
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next section that experimental observations are consistent
with this model and cannot be understood in the context of a
dislocation-driven model.

III. EXPERIMENTAL VALIDATION

Most superplastic ceramic materials display either a linear
stress dependence or a parabolic one. A linear dependence is
consistent with grain-boundary sliding accommodated by
diffusion.'® In contrast, the parabolic dependence was, some-
times, implicitly discussed in terms of the Ball-Hutchinson’s
model,® even though no dislocation activity was observed.
Thus, it actually remains unexplained. Five different ceramic
systems are discussed in this section and their mechanical
behavior is compared to the expectations of the present
model.

A. B-SiAlON polycrystals

Chihara et al.?> have recently investigated the high-
temperature compressive deformation of B-SiAION poly-
crystals. The temperatures considered ranged between 1823
and 1973 K. The authors reported a stress exponent of n
~72, which decreases toward n=1 when the flow stresses
increases. It was concluded that dislocations played no im-
portant role in the deformation of this material, in spite of the
suggestion that the Artz-Ashby-Verrall model'' may account
for the observed transition in stress-exponent values.

The activation energy was found to depend on stress (or
temperature). Its value decreases from Q; ~ 1200 kJ/mol for
the lowest stresses (8<€1) to Q,=900 kJ/mol for the high-
est ones (8= 1). Such dependence is consistent with the pre-
diction of Egs. (22) and (23). One should then have Q.
~900 kJ/mol and Qu,=~600 kJ/mol. In Ref. 20 the flow
stress values for which the stress exponent is n=1.5 were
also determined as a function of temperature. From Eq. (22),
a value n=1.5 corresponds to 8~0.3 and one deduces from
Eq. (14) or (17) that the temperature dependence of the flow
stress o 5 should follow an Arrhenius relation of the form

Qerr = ng) . 24)

Op5% exp( T

An Arrhenius plot of the experimental o5 values drawn
from Ref. 22 is shown in Fig. 2. Although the experimental
accuracy of these measurements is not known, the agreement
with Eq. (24) looks quite reasonable, all the more as the
experimental slope yields an activation energy of 300 kJ/
mol, which is equal to (Qefr—Qp.)-

B. Al-doped SiC polycrystals

Tokiyama et al. have recently studied the high-
temperature deformation of Al-doped SiC polycrystals. The
authors report a transition in the stress-exponent value,
which increases from n=1.4 to n=2.6 when the stress de-
creases. These measurements were performed at a single
temperature (1850 °C) and no information is available on
the activation energies. No evidence of dislocation activity
was reported. This seems reasonable because the Frank-Read
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stress is expected to be much larger than the flow stress in
the range of experimental conditions investigated. The model
by Artz et al.'' is also invoked in that case to explain the
transition in stress-exponent values, despite the absence of
dislocation activity.

The reason for the occurrence of a stress exponent n
~2.6 is discussed as follows.?? The model by Artz, Ashby,
and Verrall states that the flow stress is proportional to the
number of grain-boundary dislocations. When the number N
of dislocation per grain-boundary interface is limited, a mul-
tiplicative factor N?/(N?+1/2) is introduced in the conven-
tional equation for steady-state creep. Therefore, when N is
vanishingly small, this factor can be approximated by 2N?
and the strain rate should depend on the flow stress cubed
(2N* X N). This statement is, however, incorrect because N
cannot take values between 0 and 1. Furthermore, the tran-
sition in stress-exponent values is reported to occur at a flow
stress of about 250 MPa (the stress is in the range of 30-400
MPa). This transition is smooth whereas it should be very
sharp if it were to be explained by the multiplicative factor;
N should then increase by more than 1 order of magnitude in
the considered stress range and the multiplicative factor
should converge to 1 very fast.

The present model qualitatively accounts for the transition
and an estimate of the transition stress can be performed. The
lattice parameter of silicon carbide?® is a=3.1 A and the
grain-boundary energy per unit area® is y~0.1-0.3 J m~2.
Like in Sec. III A, we take the transition stress at n=1.5,
which corresponds to 8=0.3. Tokiyama et al.?} indicate that
accommodation is mainly driven by grain-boundary diffu-
sion, thus D= Dgy,. With ~a and a@=0.5, Eq. (14) yields
a transition stress between 116 and 348 MPa, which is of the
right order of magnitude when compared to the experimental
value of 250 MPa. The value n=2.6>2 might be associated
to the existence of a small threshold stress for grain-
boundary sliding, as was previously suggested by Ashby and
Verrall. !

C. Nanocrystalline MgO

Fully dense nanocrystalline MgO specimens were tested
in compression at 750 °C by Dominguez-Rodriguez et al.?®
The average grain size was 30—50 nm. In such conditions, no
dislocation activity was detected, extensive grain-boundary
sliding was observed and the stress exponent was n=2 all
through the range of investigated flow stresses. Thus, none of
the classical models for superplasticity applies to this system.
The present model is compatible with these results, taking
into account the high values of the grain-boundary energies
in MgO reported by Keliman and Chaim.?’ To estimate the
value of 3, we relate the effective diffusion coefficient to the
grain-boundary diffusion coefficient by D= m6Dy,/d (Ref.
26, see also Sec. IIB). With the typical values o
~300 MPa, y=1.1 IJm™2, a=0.5, and 6=4 A, Eq. (14)
yields B~3X1073. It follows from Eq. (22) that n~2,
which is precisely the experimentally obtained value.

D. Yttria-tetragonal zirconia polycrystals

Y-TZPs are one of the most studied structural ceramics
system and their high-temperature mechanical behavior is
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FIG. 3. Temperature dependence of the flow stress o 5, corre-
sponding to a stress exponent n=1.5, in B-SiAION polycrystals
(redrawn from Chihara et al. (Ref. 22); (no error bars are provided
in this reference). The agreement between the experimental data
and the Arrhenius form predicted by Eq. (24) is quite good. The
straight line corresponds to the expected activation energy of 300
kJ/mol (see text).

extensively described in the literature (cf. the review by
Jiménez-Melendo et al.?®). It is widely accepted that grain-
boundary sliding is the dominant process responsible for
large deformations and the stress exponent is found to be n
=2 in the superplastic regime. The typical grain size of su-
perplastic YTZP specimens is 0.2-0.5 um. Recently,
Zapata-Solvas et al.”® measured the dependence of the stress
exponent on grain size at constant strain rate and found that
it decreases with increasing grain size. In parallel, the grain-
size exponent is constant (p=2). A few years ago, the nature
of the deformation mechanism in this system was the subject
of a controversy. Whereas Berbon and Langdon® considered
that the Artz-Ashby-Verrall mechanism'! applies in that case,
Dominguez-Rodriguez and Jiménez-Melendo?®! and Morita
and Hiraga® opposed this view. At present, none of the cur-
rent models can account for the values of the stress exponent.

Under a constant strain rate, the larger the grain size, the
larger the flow stress according to Eq. (1) taken with n=<2
and p=2. Thus, increasing the grain size implies increasing
the value of B. From Egs. (14) and (17), B is proportional to
stress and grain size. Inserting this result in Eq. (9), one finds
after some manipulation that o/(éd)"? should be propor-
tional to od at a given temperature. Zapata-Solvas et al.?’
measured the stress dependence of the strain rate as a func-
tion of stress at 1350 °C for Y-TZP specimens with different
grain sizes. Figure 3 shows a plot of a/(éd)!"? as a function
of od, which combines the data obtained in Ref. 29 with
another set of data®® at the same temperature. A good linear
fit is obtained in spite of the experimental scatter inherent to
high-temperature measurements.

E. Polycrystalline alumina ceramics

Finally, several alumina ceramics exhibit the same behav-
ior as Y-TZP. The analysis performed in this section is ap-
plied to this case and illustrated by Fig. 4. This plot is similar
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FIG. 4. Plot of o/(&d)"? versus od constructed from results on
Y-TZP ceramics at 1350 °C by Melendo et al. (Ref. 28) and
Zapata-Solvas et al. (Ref. 29). The present model predicts that all
data should follow a linear dependence in such a plot. The regres-
sion line fits the data with a regression coefficient r=0.996. The
data values are estimated to be within £10%, which is typical for
high-temperature measurements. The inaccuracies result from the
measurement of stresses (+2%), strain rates (*10%), and grain
sizes (+5%).

to the one of Fig. 3. The data are drawn from literature on
alumina ceramics deformed at 1300 °C (Refs. 32-34) and
the results are again found in fairly good agreement with the
predicted dependence (Fig. 5).

IV. CONCLUSIONS

A model was developed for explaining the high-
temperature superplastic properties of ceramic systems. This
model is established on very simple physical bases. A key
element of this model is the central role of grain curvature as
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FIG. 5. Plot of o/(8d)"? versus od at 1300 °C for several alu-
mina ceramics. The data are taken from published results (Refs.
32-34) and include alumina (Ref. 34) doped with MgO. The regres-
sion line is obtained with a regression factor r=0.956. The sources
of experimental error are the same as in Fig. 3 and the data values
are also estimated to be typically within =10%.

the driving force for grain sliding. Assuming that grain
boundaries are dislocation free, it describes a mechanism of
grain-boundary sliding accommodated by diffusion, which
can explain the values of the stress exponent, especially the
value n=2, and its possible stress and temperature depen-
dences. The consequences are found to be consistent with
most experimental results in ceramic systems where no dis-
location activity could be detected.
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